Saturn je v pořadí planet na šestém místě a po Jupiteru druhá největší planeta sluneční soustavy. Planeta byla pozorována již starověkými astronomy a byla pojmenována po římském bohu Saturnovi, který byl obdobou řeckého boha Krona. Astronomický symbol pro Saturn je ♄. Saturn patří mezi velké plynné obry, pro které je typické, že nemají pevný povrch, ale pouze hustou atmosféru, která postupně přechází do pláště. Atmosféra je tvořena převážně lehkými plyny, a to hlavně vodíkem, který tvoří 96,3 % jejího objemu. Při pozorování Saturnu z dálky je planeta světle žlutá, což způsobuje vrstva mraků s nejasnými pásy různých barevných odstínů, které jsou přibližně rovnoběžné s rovníkem planety. Teplota v horní oblačné vrstvě atmosféry dosahuje −140 °C. Objem planety je 764krát větší než objem Země, má však ze všech planet nejmenší hustotu, která dosahuje pouze 0,6873 g/cm3. Jedná se o jedinou planetu ve sluneční soustavě, která má menší střední hustotu než voda.[2] Saturn je znám svou mohutnou soustavou planetárních prstenců, které jsou viditelné ze Země i malým dalekohledem. Vedle prstenců, které se značí velkými písmeny latinské abecedy, obíhá kolem planety také početná rodina měsíců, jichž je ke květnu 2023 potvrzeno 145.[1][3] Největší z nich je Titan, který má jako jediný měsíc ve sluneční soustavě hustou atmosféru. Jeden oběh okolo Slunce vykoná Saturn za 29,46 pozemského roku. Na noční obloze je snadno pozorovatelný pouhým okem jako nažloutlý neblikavý objekt, jasností srovnatelný s nejjasnějšími hvězdami. Od ekliptiky se nikdy nevzdálí na větší úhlovou vzdálenost než 2,5°. Přechod jedním znamením zvěrokruhu trvá více než 2 roky.
Předpokládá se, že Saturn vznikl stejným procesem jako Jupiter z protoplanetárního disku před 4,6 až 4,7 miliardami let. Existují dvě hlavní teorie, jak mohly velké plynné planety vzniknout a zformovat se do současné podoby. Jedná se o teorii akrece[4] a teorii gravitačního kolapsu.[5] Teorie akrece předpokládá, že se v protoplanetárním disku postupně slepovaly drobné prachové částice, čímž začaly vznikat větší částice až posléze balvany. Neustálé srážky těles vedly k jejich narůstání, až vznikla tělesa o velikosti několik tisíc kilometrů. Tato velká železokamenitá tělesa se stala zárodky terestrických planet. Předpokládá se, že podobná tělesa mohla vzniknout i ve vzdálenějších oblastech sluneční soustavy, kde vlivem velké gravitace začala strhávat do svého okolí plyn a prach, který se postupně začal nabalovat na pevné jádro, až planeta dorostla do dnešní velikosti.[6] Protože úniková rychlost na povrchu Saturnu dosahuje 35,49 km/s, což daleko převyšuje tepelnou rychlost molekul, zůstalo na něm nejspíše původní složení atmosféry, kterou nabalil už během vzniku z protoplanetárního disku.[7] Teorie gravitačního kolapsu na druhou stranu předpokládá, že velké planety nevznikaly postupným slepováním drobných částic, ale poměrně rychlým smrštěním z nahuštěného shluku v zárodečném disku podobným způsobem, který je znám při vzniku hvězd. Podle teorie několika gravitačních kolapsů, jejímž autorem je Alan Boss z Carnegie Institution of Washington, byl vznik plynných obrů krátký a v případě Saturnu trval jen několik století.[5] Vznik velkých Saturnových měsíců proběhl pravděpodobně stejným způsobem, jako vznikaly kamenné planety. Jelikož je však Saturn velmi vzdálen od Slunce, v žádné z fází vzniku měsíců nevystoupila teplota na vysoké hodnoty jako v případě okolí Jupitera. Vlivem nízkých teplot tak nedošlo k úniku lehce tavitelných látek z původního disku okolo vznikající planety. Předpokládá se, že proto je v Saturnově měsíční soustavě tak vysoké zastoupení vodního ledu.[8] Menší a zpětně obíhající měsíce jsou nejspíše jako v jiných případech zachycené planetky pocházející z jiných oblastí sluneční soustavy. Saturn je nejvíce zploštělá planeta ve sluneční soustavě. Její rovníkový průměr je přibližně o 10 % větší než polární průměr (rovníkový průměr je 120 536 km, polární průměr je 108 728 km[9]). Možným vysvětlením tohoto jevu je rychlá rotace a spíše tekutá než pevná fáze vodíku v jádře planety, která se působením vnitřního tlaku nevypařuje až do teploty 7000 K.[10] Podobně jako Jupiter i Saturn vyzařuje více energie (např. v podobě tepla 1,78 krát více tepla než dostává od Slunce), což je způsobeno nejspíše klesáním hélia do spodnějších vrstev v atmosféře Saturnu.[11] Složení Saturn se podobně jako Jupiter celkově skládá ze 96.3 % vodíku a 3 % hélia se stopami metanu, vody a amoniaku. Toto složení odpovídá složení původní mlhoviny, ze které se zformovaly všechny planety sluneční soustavy. Předpokládá se, že jádro planety je tvořeno z kovového vodíku či hélia (nebo sloučeniny těchto dvou kovů),[12] což je způsobeno obrovským tlakem panujícím uvnitř planety. Teplota v jádře se odhaduje na 12 000 K.[13] Podle údajů získaných během průletu sondy Voyager 1 je poměr vodíku ku héliu v atmosféře 9:1.[14][p 2] Vnitřní stavba Vnitřní stavba Saturnu Se vzrůstající hloubkou teplota a tlak ve vnitřku planety narůstá vlivem nadložních vrstev. Mezi atmosférou, povrchem, pláštěm a jádrem nejsou zřetelné hranice. Už 500 km pod vrcholky mraků vodík přechází do kapalného skupenství a vytváří globální oceán tekutého vodíku. Blíže ke středu planety získává kapalný vodík stále více vlastností kovů. Asi v hloubce 25 000 až 33 000 km pod vrchními mraky začíná vrstva tekutého kovového vodíku,[15] která má hloubku přibližně 20 000 km. Kovový vodík je forma vodíku se zvláštními vlastnostmi, mezi které patří velmi dobrá elektrická vodivost. Jádro planety má přibližně 25 000 km v průměru[16] a tvoří ho pravděpodobně směs skalnatého materiálu a podle některých údajů i ledu.[17] Teplota ve vnitřním jádře je podle odhadů 12 000 K,[13] tlak se odhaduje na 8 miliónů MPa.[18] Hmotnost jádra je 22 násobek hmotnosti Země.[19]
Atmosféra Saturnu se skládá téměř výhradně z vodíku a hélia. Největší zastoupení má molekulární vodík (96,3 %), který je následován héliem (3,25 %). Malý obsah hélia se vysvětluje tím, že těžší hélium klesá přes vodíkovou vrstvu blíže k jádru, kde se hromadí. V horních vrstvách atmosféry se vyskytuje také krystalický amoniak. Vyjma těchto látek obsahuje atmosféra také malé množství metanu a dalších uhlovodíků.[20] Atmosféra Saturnu je vlivem vzdálenosti od Slunce chladnější než atmosféra Jupiteru, ale nacházejí se v ní komplexnější molekuly, například ethan a jiné deriváty metanu.[17] Ionosféra, extrémně řídká ionizovaná vrstva atmosféry Saturnu, sahá až po prstenec C. Nejvrchnější vrstva atmosféry absorbuje ultrafialové záření, což vede ke vzniku mlžného oparu. Mlha vzniká na polokouli, která je právě nakloněna ke Slunci. V horních mracích dosahuje teplota přibližně −140 °C. S mocností atmosféry směrem k nitru planety postupně roste teplota, což ovlivňuje skupenství různých chemických sloučenin v atmosféře a má za následek vznik mraků různého složení v různých výškových hladinách. Nejvyšší vrstvu tvoří krystalky čpavkového ledu. Pod nimi se nachází vrstva mraků ze siřičitanu amonného. Předpokládá se, že nejnižší vrstvu tvoří mraky tvořené z vodního ledu. K jádru planety padají kapky heliového deště. Přeměna jejich pohybové energie na tepelnou způsobuje, že Saturn vyzařuje přibližně 1,78krát větší množství energie, než dostává od Slunce.[21] Vyzařování energie do okolí pravděpodobně pomáhá ještě další mechanismus, gravitační kolaps (tzv. Kelvinova–Helmholtzova nestabilita) podobně jako v případě Jupiteru.[22] Nejchladnější částí atmosféry jsou póly, ale americké sondy Voyager 1 a Voyager 2 překvapivě naměřily nízké teploty i ve středu rovníkového pásu.